基础
Shannon’s Theorem 香农理论
考虑一个binary symmetric channel,其中每一位传输错误的概率为$p$。记$q := 1-p$。
假设$C$是一个长度为$n$,包含$M$个词($x_1,…,x_M$)的code。设$P_i$为$x_i$被错误解码的概率,
以及
Definition:
The channel capacity $C(p)$ of a binary symmetric channel is defined as:
Theorem (Shannon’s Theorem 香农定理):
Let$C(p)$ be the channel capacity. If $0 < R < C(p)$ and $M_n := 2^{\lfloor Rn \rfloor}$, then
首先R其实表示的是目前编码的传输效率,因为当传输n位的信息时,其中只有$\text{log}_2(M)$位是真的有效信息。
所以可以这样理解Shannon’s Theorem 香农定理:
对于每个频道(Channel)来说,$C(p)$是其传输效率(R)的上限。
注意到,当$p=0.5$时,$C(p) = 1 + \text{log}_2(0.5) = 1-1 = 0$ 。也就是说,当传输时每一位的准确率都是纯随机的时候,不存在任何编码使得我们可以正确地传输数据。
Bounds/界限
Singleton Bound
Theorem:
Let $q$ be a prime power and $k \leq n$ be positive integers. Let $C$ be an $[n,k]_q$ linear code. Then,
MDS Code
Definition:
A code that achieves the Singleton bound is called a maximum distance separable (MDS) code
.
Hamming bound
Theorem (Hamming bound):
Let $q$ be a prime power and $k \leq n$ be positive integers. Let $C$ be an $[n,k]_q$ linear code with $d_H(C) \geq d$ and let $t = \lfloor \frac{d-1}{2} \rfloor$. Then,
Equivalently,
Perfect Code
Definition:
Let $q$ be a prime power and $k \leq n$ be positive integers. An $[n,k,d]_q$ linear code $C$ with
,i.e. achieves the Hamming bound, is called a perfect code
Definition (Hamming Code):
Let $q$ be a prime power and $r \geq 2$ be a positive integer. Let $n = \frac{q^r-1}{q-1}$ and $H$ be the $r \times n$ matrix having as columns all vectors in $\mathbb{F}^r_q$ up to non-zero scalar multiples. Then $\mathcal{C} = \text{ker}(H^T)$ is called Hamming code
.
Lemma:
Let $q$ be a prime power and $r \geq 2$ be a positive integer and set $n = \frac{q^r-1}{q-1}$. The $[n,n-r]_q$ Hamming code has $d_H(\mathcal{C}) = 3$ and is perfect.
Gilbert-Varshamov Bound
Let $A(d,n,q)$ be the largest size of any code (also non-linear) in $\mathbb{F}^n_q$ with minimum distance at least $d$.
Theorem (Hamming bound):
Let $q$ be a prime power and $n,d$ be positive integers. Then,
Plotkin Bound
Theorem (Plotkin Bound):
Let $q$ be a prime power and $k \leq n$ be positive integers. Let $C$ be an $[n,k]_q$ non-degenerate linear code. Then,
The simplex code achieves this Plotkin Bound.